EM 1110-2-2907
1 October 2003
SORT #
CLASS NAME
COLOR TRAINING CLASSIFIED % TOTAL % DATA
1
Unclassified
25,207,732
68.86%
2
ROAD
Red1
77
0
0.00%
0.00
3
AG
Green1
1642
0
0.00%
0.00
4
LP
Red1
4148
2,164,089
5.91%
19.53
5
LPO
Blue1
5627
1,562,180
4.27%
14.10
6
LPH
Maroon1
4495
2,170,395
5.93%
19.58
0.90%
2.97
7
MHW-low
Aquamarine
888
329,360
8
CUT
Chartreuse
1219
1,055,063
2.88%
9.52
9
MHW-high
Sienna1
3952
1,566,698
4.28%
14.14
10 MORT
Green3
1703
4,651
0.01%
0.04
12 juncus-low-density
Red1
52
37,808
0.10%
0.34
13 juncus-high-density
Blue1
65
102,174
0.28%
0.92
13 juncus-panicum-mix
Cyan1
53
0
0.00%
0.00
14 juncus-mixed-clumps-field
Magenta1
29
3
0.00%
0.00
16 g1=hd-scol+background+w
Green1
32
610,283
1.67%
5.51
17 g2=md-scol+background
Yellow1
29
952
0.00%
0.01
18 g4=md-scol+spartina+mud
Maroon1
36
0
0.00%
0.00
19 g3=md-scol+spartina+background Purple1
50
0
0.00%
0.00
20 g5=ld-scol+mud
Aquamarine
56
617
0.00%
0.01
21 g1=md-spal+w
Red1
66
4,789
0.01%
0.04
0.39%
1.27
22 g2=hd-spal+w
Green1
52
141,060
23 g3=hd-spal+w+sppa
Cyan1
29
803,145
2.19%
7.25
24 g4=md-spal+w+sppa
Magenta1
44
0
0.00%
0.00
25 g5=hd-spal+mud
Red1
25
25
0.00%
0.00
26 g6=mixed-spal
Chartreuse
28
6,555
0.02%
0.06
26 g7=md-spal+lit+mud
Thistle1
36
6
0.00%
0.00
28 g8=md-mixed-spal
Blue4
85
0
0.00%
0.00
29 g1=hd-sppa+mix
Red1
37
74
0.00%
0.00
30 g2=hd-sppa+mud
Blue1
40
0
0.00%
0.00
31 g3=mhd-sppa+spal+background Cyan1
32
939
0.00%
0.01
32 g4=lmd-sppa+mix+background Magenta1
160
0
0.00%
0.00
1.42%
4.69
33 g9-ld-sppa+spal+mud
Blue4
28
520,290
34 g10=ld-sppa+mix+background
Cyan3
45
0
0.00%
0.00
35 g11=ld-sppa+w+mix
Green2
32
1,255
0.00%
0.01
37
11082411.00
Figure 5-18. Classification training data of 35 landscape classification features. "Training" pro-
vides the pixel count after training selection; classification provides the image pixel count after a
classification algorithm is performed. This data set accompanies Figure 5-16, the classified image.
(Campbell, 2003).
(3) Classification Algorithms. Image pixels are extracted into the designated
classes by a computed discriminant analysis. The three types of discriminant analysis
algorithms are: minimum mean distance, maximum likelihood, and parallelepiped. All
use brightness plots to establish the relationship between individual pixels and the
training class (or training site).
(a) Minimum Mean Distance. Minimum distance to the mean is a simple com-
putation that classifies pixels based on their distance from the mean of the training class.
5-32