Table 11. Concentrations (g/g) of Co, Ni, Hg, Tl, and Se
Table 12. Concentrations (g/g) of Ag, Cd, Sn, Sb, and
determined for spiked soil matrices by response factor/
Ba determined for spiked soil matrices by response fac-
Compton Kα peak normalization.
tor/Compton Kα peak normalization.
Metal concentrations (g/g)
Metal concentrations (g/g)
Material & spike
Co
Ni
Hg
Tl
Se
Material & spike
Ag
Cd
Sn
Sb
Ba
Ottawa sand
Ottawa sand
1000 ppm
1250
1230
758
909
977
1000 ppm
1170
1000
986
1060
1160
500 ppm
539
609
471
532
502
500 ppm
646
499
398
557
527
250 ppm
267
290
149
421
231
250 ppm
269
176
226
302
262
125 ppm
199
90
132
225
89
125 ppm
109
48
145
160
121
0 ppm
ND
ND
13
52
ND
0 ppm
19
ND
97
ND
ND
Matrix
ND
ND
ND
13
ND
Matrix
25
ND
25
12
ND
Ft. Edwards clay
Ft. Edwards clay
1000 ppm
200*
496
623
813
675
1000 ppm
1032*
936
899
1080
996*
500 ppm
50*
260
268
482
449
500 ppm
604*
334
447
495
496*
250 ppm
ND*
187
145
347
136
250 ppm
297*
162
248
317
288*
125 ppm
ND*
90
120
199
73
125 ppm
166*
42
146
152
163*
0 ppm
6500
45
ND
63
ND
0 ppm
312
ND
92
ND
703
Matrix
6300
16
ND
ND
ND
Matrix
263
ND
26
20
665
CRREL soil
CRREL soil
1000 ppm
390*
761
823
993
882
1000 ppm
896*
1040
918
996
1030*
500 ppm
ND*
356
323
553
519
500 ppm
363*
531
459
493
489*
250 ppm
180*
93
141
330
238
250 ppm
179*
253
286
295
273*
125 ppm
ND*
15
110
225
128
125 ppm
82*
153
142
142
118*
0 ppm
4050
ND
43
66
8
0 ppm
169
ND
81
ND
392
Matrix
4070
ND
ND
ND
ND
Matrix
159
ND
36
14
410
Rocky Mountain Arsenal
Rocky Mountain Arsenal
1000 ppm
560*
947
933
1030
977
1000 ppm
992*
984
745
1070
1060*
500 ppm
270*
481
395
545
483
500 ppm
410*
416
418
538
530*
250 ppm
60*
298
179
449
211
250 ppm
297*
142
246
274
220*
125 ppm
50*
86
161
216
111
125 ppm
140*
42
155
143
130*
0 ppm
1580
12
21
33
ND
0 ppm
246
ND
95
ND
914
Matrix
1680
ND
ND
12
ND
Matrix
230
ND
37
11
967
Tampa Bay sediments
Tampa Bay sediments
1000 ppm
846*
962
933
997
1010
1000 ppm
1210*
1060
899
1080
1050
500 ppm
482*
457
395
519
460
500 ppm
567*
488
447
495
596
250 ppm
178*
315
179
425
221
250 ppm
368*
203
348
317
287
125 ppm
103*
129
161
199
124
125 ppm
153*
94
146
152
152
0 ppm
193
22
21
73
ND
0 ppm
167
ND
92
ND
28
Matrix
135
ND
ND
7
11
Matrix
160
ND
26
20
29
Lebanon landfill soil
Lebanon landfill soil
1000 ppm
435*
838
550
996
968
1000 ppm
1040
1070
902
1060
990*
500 ppm
395*
470
472
460
511
500 ppm
535
436
454
496
498*
250 ppm
135*
179
207
435
192
250 ppm
314
297
248
304
247*
125 ppm
85*
88
148
253
123
125 ppm
180
182
150
144
118*
0 ppm
2260
ND
21
45
ND
0 ppm
49
36
90
ND
360
Matrix
2170
ND
ND
14
ND
Matrix
55
72
31
15
439
* Average of 0 ppm and matrix subsamples subtracted
* Average of 0 ppm and matrix subsamples subtracted
Several factors that control the sensitivity of el-
actually result in the production of characteristic
emental analysis by XRF analysis are independent
X-ray photons (Jenkins 1986). In addition, since
only a few isotopes are available for field-portable
low atomic numbers have low fluorescence yields
XRF systems, there can be a large separation be-
(Fig. 4). The fluorescence yield is the ratio of num-
tween incident and excitation energies. The greater
ber of vacancies created within an atom by the in-
this separation, the lower the analyte response, be-
cident radiation to the number of vacancies that
cause fewer atoms become excited. A third factor
9