Table 11. Stress conditions of resilient modulus
Table 12. Stress conditions of resilient modulus
tests in current study.
tests--previous study.
Confining pressure
Deviator stress
Stress ratio
Confining pressure
Deviator stress
Stress ratio
σ3, kPa (lb/in.2)
σd, kPa (lb/in.2)
(σ1/σ3)
σ3,, kPa (lb/in.2)
σd,, kPa (lb/in.2)
(σ1/σ3)
a. Thawed or never-frozen specimens
a. Thawed specimens
6.9 (1.0)
3.4 (0.5)
1.5
48.3 (7.0)
48.3 (7.0)
2.0
13.8 (2.0)
6.9 (1.0)
1.5
48.3 (7.0)
34.5 (5.0)
1.7
27.6 (4.0)
13.8 (2.0)
1.5
48.3 (7.0)
27.6 (4.0)
1.6
48.3 (7.0)
24.1 (3.5)
1.5
48.3 (7.0)
20.7 (3.0)
1.4
69.0 (10.0)
34.5 (5.0)
1.5
48.3 (7.0)
13.8 (2.0)
1.3
48.3 (7.0)
6.9 (1.0)
1.1
6.9 (1.0)
6.9 (1.0)
2.0
48.3 (7.0)
3.4 (0.5)
1.1
13.8 (2.0)
13.8 (2.0)
2.0
27.6 (4.0)
27.6 (4.0)
2.0
27.6 (4.0)
48.3 (7.0)
2.8
48.3 (7.0)
48.3 (7.0)
2.0
27.6 (4.0)
34.5 (5.0)
2.3
69.0 (10.0)
69.0 (10.0)
2.0
27.6 (4.0)
27.6 (4.0)
2.0
27.6 (4.0)
20.7 (3.0)
1.8
6.9 (1.0)
10.3 (1.5)
2.5
27.6 (4.0)
13.8 (2.0)
1.5
13.8 (2.0)
20.7 (3.0)
2.5
27.6 (4.0)
6.9 (1.0)
1.3
27.6 (4.0)
41.4 (6.0)
2.5
27.6 (4.0)
3.4 (0.5)
1.1
48.3 (7.0)
72.4 (10.0)
2.5
69.0 (10.0)
103.4 (15.0)
2.5
13.8 (2.0)
34.5 (5.0)
3.5
13.8 (2.0)
27.6 (4.0)
3.0
b. Frozen specimens
13.8 (2.0)
20.7 (3.0)
2.5
6.9 (10)
60 (9)
13.8 (2.0)
13.8 (2.0)
2.0
6.9 (10)
138 (20)
13.8 (2.0)
6.9 (1.0)
1. 5
6.9 (10)
207 (30)
13.8 (2.0)
3.4 (0.5)
1.3
6.9 (10)
276 (40)
6.9 (10)
345 (50)
6.9 (1.0)
34.5 (5.0)
6.0
6.9 (10)
483 (70)
6.9 (1.0)
27.6 (4.0)
5.0
6.9 (10)
621 (90)
6.9 (1.0)
20.7 (3.0)
4.0
6.9 (10)
827 (120)
6.9 (1.0)
13.8 (2.0)
3.0
6.9 (1.0)
6.9 (1.0)
2.0
resulting equation was as follows:
6.9 (1.0)
3.4 (0.5)
1.5
Mr = K1(wu-g / wt )K2 .
(6)
b. Frozen specimens
69 (10)
34 (5)
This governing parameter has a good physical ba-
69 (10)
69 (10)
sis. When the material is very cold and solidly fro-
69 (10)
103 (15)
zen, there is very little unfrozen water and the
69 (10)
138 (20)
ratio wug/wt is a small number, << 1; and when the
69 (10)
207 (30)
material is just below the freezing point, wug/wt
69 (10)
276 (40)
approaches a value of 1. When this form of the
69 (10)
345 (50)
69 (10)
483 (70)
equation was used in the mechanistic design pro-
69 (10)
621 (90)
cedure (Bigl and Berg 199b), the calculated
69 (10)
690 (100)
amount of total water was often very high, and the
ratio of unfrozen water to total water was unrea-
Notes:
sonably small. Therefore, other relationships were
Thawed samples: each combination of stresses nor-
considered.
mally used at each moisture condition.
The final two forms that were used to represent
Frozen samples: each combination of stresses nor-
the unfrozen water content in the governing pa-
mally used at each of three temperatures.
21