6. Acknowledgments
[7] S. Bhukhanwala and T. V. Ramabadran. Automated global
enhancement of digitized photographs. IE E Transactions
E
on Consumer Electronics, 40(1):272 278, February 1994.
The ERS-1 SAR images and associated tracked ice mo-
[8] M. Black and P. Anandan. A framework for the robust es-
tion vectors were provided courtesy of Mark Drinkwater to
timation of optical flow. In Proceedings of IE E Computer
E
advance the rendering of sea-ice motion products of Antarc-
Society International Conference on Computer Vision, pages
tic sea ice as started under NSF OPP-9818645. ERS-1 scat-
231236, 1993.
terometer images were originally processed by David Long
[9] M. J. Black. Robust incremental optical flow. PhD thesis,
of Brigham Young University as part of the collaborative
Yale University, 1992.
ESA-supported AO2.USA.119 project:SAR data were also
[10] R. N. Bracewell, K.-Y. Chang, A. K. Jha, and Y.-H. Wang.
supplied courtesy of ESA, 1992, and processed to ice mo-
Affine Theorem for two-dimensional Fourier Transform.
tion under the same study. Further development of a mo-
Electronics Letters, 29(3):304, February 1993.
[11] P. J. Burt and E. H. Adelson. The laplacian pyramid as a
tion tracking algorithm was made possible through ONR
compact image code. IE E Transactions on Communica-
E
N00014-03-1-0045 and N00014-02-1-0244.
tions, COM-31,4:532540, 1983.
[12] E. D. Castro and C. Morandi. Registration of translated and
rotated images using finite fourier transform. IEEE Transac-
Table 1. Comparison of PSNR between
motion compensated images and Image2,
703, 1987.
PSNRG - Global, PSNRLL - Local Linear,
[13] J. W. Cooley and J. W. Tukey. An algorithm for the ma-
PSNRLA - Local Affine
chine calculation of complex fourier series. Math. Comput.,
19:297 301, April 1965.
Image1
Image2
PSNRG
PSNRLL
PSNRLA
[14] M. D. Coon, G. S. Knoke, D. C. Echert, and R. S.
2982-5693
3025-5693
13.109
13.934
14.116
Pritchard. The architecture of an anisotropic elastic-plastic
3058-5103
3068-5693
13.915
14.834
15.006
sea ice mechanics constitutive law. J. of Geopys. Res,
3068-5693
3111-5693
14.865
16.135
16.477
103(C10):2191521925, September 15 1998.
3111-5693
3144-5103
11.419
11.611
11.649
[15] M. Drinkwater. Analysis of SAR Data of the Polar Oceans,
3144-5103
3154-5693
14.128
15.268
15.414
chapter Satellite microwave radar observations of Antarctic
3154-5693
3197-5693
11.351
11.395
11.379
sea ice, pages 145187. Springer-Verlag, 1998.
[16] M. Drinkwater. Antarctic Sea Ice: Physical Processes, In-
3197-5693
3230-5103
15.715
18.538
19.080
teractions, and Variability, volume 74, chapter Active mi-
3230-5103
3283-5693
14.213
15.645
15.947
crowave remote sensing observations of Weddell sea ice,
3402-5103
3412-5693
12.489
13.944
14.078
pages 187212. Antarctic Research Series, 1998.
3412-5693
3455-5693
12.850
13.645
13.689
[17] M. R. Drinkwater. Recent advances in radar remote sens-
3412-5713
3455-5713
13.446
14.524
14.699
ing. In newsletter of the SCAR Global Change Programme,
volume 1, 1996.
[18] M. R. Drinkwater and C. Kottmeier. Proc. IGARSS '94. In
Satellite microwave radar- and buoy-tracked ice motoin in
References
the Weddell Sea during WWGS '92, volume 1, pages 153
155, Pasadena, CA, August 1994.
[1] Y. Aksenov and W. D. H. III. Failure propagation effects in
[19] M. R. Drinkwater and X. Liu. ERS satellite microwave radar
an anisotropic sea-ice dynamics model. In J. Dempsey and
observations of antarctic sea-ice dynamics. In Proc. 3rd ERS
H. Shen, editors, IUTAM Symposium on Scaling Laws in Ice
Scientific Symposium, Florence, Italy, 1997.
Mechanics and Ice Dynamics, pages 363372, Netherlands,
[20] W. J. Emery, C. Fowler, J. Hawkins, and R. Preller. Fram
2001. Kluwer Academic Publishers.
Strait satellite image-derived ice motions. Journal of Geo-
[2] S. Alliney, G. Cortelazzo, and G. Mian. On the registra-
physical Research, 96 (C5):89178920, 1991.
tion of an object translating on a static background. Pattern
[21] M. Fily and D. A. Rothrock. Sea-ice tracking by nested
Recognition, 29(1):131141, 1996.
correlations. IEEE Trans. Geosci. Remote Sens., GE-
[3] P. Anandan. Measuring Visual Motion from Image Se-
25(5):570580, 1987.
quences. PhD thesis, University of Massachusetts, 1987.
[22] H. Foroosh, J. B. Zerubia, and M. Berthod. Extension of
[4] P. Anandan. A computational framework and an algorithm
phase correlation to subpixel registration. IP, 11(3):188
for the measurement of visual motion. International Journal
200, March 2002.
of Computer Vision, 2(3):283310, January 1989.
[23] M. A. Hopkins. A discrete element lagrangian sea-ice
[5] P. Anandan, J. R. Bergen, K. J. Hanna, and R. Hingorani. Hi-
erarchical model-based motion estimation. In Proceedings
[24] B. Horn and B. Schunck. Determining optical flow. Artificial
of European Conference on Computer Vision, pages 237
252, 1992.
[6] A. Bab-Hadiashar and D. Suter. Robust total least squares
[25] J. R. Jain and A. K. Jain. Displacement measurement and its
based optic flow computation. In ACCV, pages 566573,
application in inter-frame image coding. IE E Transactions
E
on Communication, 29:1799 1806, December 1981.
1998.